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Abstract—Lung cancer remains one of the leading
causes of cancer-related mortality worldwide. Early
identification of high-risk individuals can improve
outcomes by enabling timely diagnostic workup and
intervention. This paper presents a lightweight, end-
to-end system for lung cancer risk prediction based
on a logistic-regression model trained on tabular
lifestyle and symptom features and deployed as a
Flask-based web application. Using a synthetic
dataset that encodes age, smoking duration, air
pollution exposure, alcohol intake, and key
respiratory symptoms, we train a standardized
logistic regression classifier and evaluate its
performance with ROC- AUC and standard
classification metrics. The trained model is exposed
through both a graphical web interface and a JSON
APL, illustrating how traditional machine-learning
models can be integrated into a modern web stack.
Although the dataset is synthetic and the system is
not intended for clinical use, it provides a practical
template for building interpretable, low latency
medical decision-support prototypes.
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regression, web application, Flask, machine learning.

I. INTRODUCTION

Lung cancer is a major global health burden and
a leading cause of cancer-related deaths. Many
patients are diagnosed at advanced stages, when
treatment options are limited and prognosis is poor.
Consequently, there is strong interest in risk
stratification tools that can help identify high-risk
individuals earlier and support timely diagnostic
workup.

Machine learning methods have been widely
explored in lung cancer research, from image-
based approaches using chest radiography and
computed
tomography (CT) scans to models based on clinical
and lifestyle factors. However, many such systems
are complex, computationally expensive, or
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difficult to integrate into lightweight clinical or
educational workflows.

This paper describes a simple, interpretable, and
easily deployable lung cancer risk prediction
system that:

. uses a logistic-regression classifier trained on

tabular lifestyle and symptom features;

. relies on a curated synthetic dataset designed
for demonstration and education;

. is deployed as a Flask web application with
both a browser-based form interface and a
JSON API.

The goal of this work is not to build a clinically
validated diagnostic tool, but rather to demonstrate
a complete pipeline— data, model training,
evaluation, and deployment—that can serve as a
blueprint for more advanced systems.

II. RELATED WORK

Numerous lung cancer risk models have been
proposed based on epidemiological data, smoking
history, and clinical variables, as well as
radiological imaging. Logistic regression remains a
popular choice for interpretable risk modeling in
clinical domains due to its probabilistic outputs and
ease of interpretation. In parallel, lightweight web
frameworks such as Flask and Fast API have
become common for deploying machine-learning
models as web services.

The contribution of this work is not a novel
algorithmic method, but a clear and compact
integration of: (i) a logistic regression model over
lifestyle and symptom features, (ii) reproducible
training and evaluation code, and (iii) a web-based
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interface and API suitable for demonstration,
teaching, and rapid prototyping.

II1. DATASET

A. Feature Set

Each record in the dataset represents an individual

and contains the following features:

. Age (years).

. Smoking years: number of years of active
smoking.

. Air pollution exposure: numerical score (0—
100) approximating chronic exposure to
polluted environments.

. Alcohol intake: units of alcohol per week.

. Coughing: binary indicator (0 = absent, 1 =
present).

. Fatigue: binary indicator (0/1).

. Weight loss: binary indicator (0/1).

. Shortness of breath: binary indicator (0/1).

. Chest pain: binary indicator (0/1).

The target label is a binary diagnosis variable,
where 1 represents lung cancer and 0 represents no
lung cancer. Two CSV files are implemented in the
project:

. lung cancer samples.csv: a compact dataset
for quick experimentation;

. lung cancer extended.csv: a larger synthetic
dataset with the same schema to introduce more
variation.

Both datasets are fully synthetic and constructed to
encode plausible correlations, such as higher risk
for individuals with longer smoking history and
greater pollution exposure, but they do not
correspond to real patient data.

B. Limitations

The synthetic nature and modest size of the
datasets impose several limitations. The data lacks
the diversity and noise typical of real-world clinical
environments, and the feature set is restricted to a
small number of risk factors and symptoms.
Additionally, there is no temporal information or
imaging data such as CT scans. These constraints
are intentional in order to keep the system

https://doi.org/10.5281/zenodo0.17971401

lightweight and interpretable, but they mean that the
model must not be used for clinical decision-
making.

IV. METHODOLOGY
A. Preprocessing Pipeline

All training logic is implemented in Python using
scikit-learn. The dataset is loaded from CSV into a
pandas Data Frame, the diagnosis column is
separated as the target label, and the remaining
columns form the feature matrix.

The data is partitioned into training and test sets
using stratified sampling to preserve the class
distribution between positive and negative cases.
Since all features are numeric, standardization is
applied using scikit-learns Standard Scaler to
improve the numerical stability of the classifier.

Preprocessing and modeling are encapsulated
within a single scikit-learn Pipeline, using a Column
Transformer to apply the scaler to all numeric
features. This design ensures that the same
transformations used during training are also
applied consistently at inference time, reducing the
risk of data leakage or mismatched preprocessing
steps.

B. Model

The core predictive model is logistic regression
implemented in scikit-learn, configured with a
maximum of 500 iterations and class weighting set
to “balanced” to address potential class imbalance.
Logistic regression is chosen because it provides
probabilistic outputs suitable for risk estimation,
because its coefficients are easily interpretable, and
because it integrates seamlessly with scikit-learn’s
pipeline and model persistence tools.

The trained pipeline—comprising both the
preprocessing steps and the logistic-regression
classifier— is serialized using joblib into a single
artifact (lung_cancer pipeline. joblib). This single
artifact simplifies deployment and ensures that the
exact combination of preprocessing and model
parameters used during training is also used in
production.

28



Gongcheng Kexue Xuebao || Volume 10, No.12, 2025 || ISSN 2095-9389

C. Web Application Architecture

The deployment layer is implemented using the
Flask microframework. The architecture includes
three main components:

. Model loading: at application startup, the
serialized pipeline is loaded from disk into
memory.

. HTML form interface: the root route (“/)
supports

GET and POST methods. On GET requests, a form
is rendered that allows users to input feature values
(age, smoking years, environmental exposure, and
symptom indicators). On POST requests, form data
is converted into a single-row pandas Data Frame
with the expected column names and passed to the
pipeline’s predict proba method to obtain a
probability of lung cancer.

. JSON API: a separate route (“/APIl/predict”)
accepts JSON payloads containing the same
feature keys and returns the predicted
probability, a binary prediction, and a coarse
risk category as a JSON response.

For interpretability, the predicted probability p of

lung cancer is mapped into three risk tiers:

. Low risk: p < 0.4;

. Medium risk: 0.4<p < 0.7;

. High risk: p >0.7.

These thresholds are heuristic and can be tuned
based on application requirements
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Fig. 3: Illustrative ROC curve (AUC 1.00).

https://doi.org/10.5281/zenodo0.17971401

V. EXPERIMENTS AND RESULTS
A. Experimental Setup

The model is trained and evaluated on the
synthetic dataset using a hold-out test split,
reserving a portion of the data (e.g., 30%) for
testing. The project code (src/train model.py)
implements this split using train_test split with
stratification and logs evaluation metrics after
training.

Performance is measured using:

. area under the receiver operating characteristic

curve
(ROC-AUC);

. accuracy;

. precision, recall, and F1-score for the positive
(cancer) class;

. aconfusion matrix summarizing true positives,
true negatives, false positives, and false
negatives.

All experiments are conducted using Python 3,
scikit-learn, pandas, NumPy, and joblib. The
training and evaluation logic is encapsulated in one
script so that experiments can be reproduced by re-
running the script with the same random seed and
dataset.

B. Quantitative Results

Using the extended  synthetic dataset
(lung_cancer_extended.csv) and a test split of 30%,
the implemented code in src/train_model.py
produced the following results on the held-out test
set (6 samples, 2 negatives and 4 positives), as
recorded in models/metrics. Json:

. ROC-AUC: 1.00

. Accuracy: 1.00

. Precision (positive class): 1.00

. Recall (positive class): 1.00
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. Fl-score (positive class): 1.00
I

Fatigue

Weight Loss

Shortness Breath

Chest Pain

Air Pollution

Age

Hemoptysis

Smoking Years 0.42

No Yes

These perfect scores reflect the simplicity and

small size of the synthetic dataset, and should not

be interpreted as real world clinical performance.
VI. DISCUSSION

The proposed system demonstrates that a simple
logistic regression model can be effectively
integrated into a modern web application to provide
fast and interpretable risk estimates. By
encapsulating preprocessing and modeling in a
single pipeline and exposing the model via a Flask
application, the system achieves consistent data
handling between training and inference, low-
latency predictions suitable for interactive use,

TABLE I

PERFORMANCE METRICS OF THE TRAINED
LOGISTIC-REGRESSION MODEL ON THE

SYNTHETIC TEST SET.
Metric Value
ROC-AUC 1.00
Accuracy 1.00
Precision 1.00
(positive)
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the positive class.

Recall 1.00
(positive)
F1-score 1.00
(positive)

and a clear separation between machine-learning
logic and presentation logic.

The experimental results show perfect
performance (ROC- AUC, accuracy, precision,
recall, and F1-score all equal to 1.0) on the small
synthetic test set. This outcome reflects the limited
size and controlled nature of the data rather than
real-world difficulty. In practical clinical settings,
data are far noisier and more heterogeneous, and
such perfect performance should not be expected.

The system also has other limitations: only a
limited set of features—primarily lifestyle factors
and a few symptoms— are modeled, while other
relevant variables such as detailed occupational
exposures, comorbidities, family history, and
genetic markers are absent. Additionally, the system
does not incorporate imaging data, which plays a
crucial role in practical lung cancer diagnosis.

For these reasons, the system is best viewed as a
teaching and prototyping tool rather than as a
clinical decision support system. Nevertheless, it
provides a concrete example of how interpretable
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statistical models can be deployed in user-friendly
interfaces and integrated into wider software
ecosystems.

VII. CONCLUSION

This paper has presented a complete, end-to-end
implementation of a lung cancer risk prediction
system based on logistic regression and deployed as
a Flask web application. The system includes
synthetic datasets, a reproducible training and
evaluation pipeline, and a dual-interface
deployment consisting of a web form and a JSON
APL

This project demonstrates how core concepts
from machine learning and web development can be
combined into a single educational application.
While the current model and data are not suitable
for clinical use, the architecture and codebase
provide a practical template for building
interpretable, low-latency =~ machine-learning
applications in healthcare and other domains.
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