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  Abstract—Lung cancer remains one of the leading 
causes of cancer-related mortality worldwide. Early 
identification of high-risk individuals can improve 
outcomes by enabling timely diagnostic workup and 
intervention. This paper presents a lightweight, end-
to-end system for lung cancer risk prediction based 
on a logistic-regression model trained on tabular 
lifestyle and symptom features and deployed as a 
Flask-based web application. Using a synthetic 
dataset that encodes age, smoking duration, air 
pollution exposure, alcohol intake, and key 
respiratory symptoms, we train a standardized 
logistic regression classifier and evaluate its 
performance with ROC– AUC and standard 
classification metrics. The trained model is exposed 
through both a graphical web interface and a JSON 
API, illustrating how traditional machine-learning 
models can be integrated into a modern web stack. 
Although the dataset is synthetic and the system is 
not intended for clinical use, it provides a practical 
template for building interpretable, low latency 
medical decision-support prototypes. 
Keywords—Lung cancer, risk prediction, logistic 

regression, web application, Flask, machine learning. 

I. INTRODUCTION 

Lung cancer is a major global health burden and 

a leading cause of cancer-related deaths. Many 

patients are diagnosed at advanced stages, when 

treatment options are limited and prognosis is poor. 

Consequently, there is strong interest in risk 

stratification tools that can help identify high-risk 

individuals earlier and support timely diagnostic 

workup. 

    Machine learning methods have been widely 

explored in lung cancer research, from image-

based approaches using chest radiography and 

computed  

tomography (CT) scans to models based on clinical 

and lifestyle factors. However, many such systems 

are complex, computationally expensive, or  

 

 

difficult to integrate into lightweight clinical or 

educational workflows. 

This paper describes a simple, interpretable, and    

easily deployable lung cancer risk prediction 

system that: 

• uses a logistic-regression classifier trained on 

tabular lifestyle and symptom features; 

• relies on a curated synthetic dataset designed 

for demonstration and education; 

• is deployed as a Flask web application with 

both a browser-based form interface and a 

JSON API. 

The goal of this work is not to build a clinically 

validated diagnostic tool, but rather to demonstrate 

a complete pipeline— data, model training, 

evaluation, and deployment—that can serve as a 

blueprint for more advanced systems. 

II. RELATED WORK 

Numerous lung cancer risk models have been 

proposed based on epidemiological data, smoking 

history, and clinical variables, as well as 

radiological imaging. Logistic regression remains a 

popular choice for interpretable risk modeling in 

clinical domains due to its probabilistic outputs and 

ease of interpretation. In parallel, lightweight web 

frameworks such as Flask and Fast API have 

become common for deploying machine-learning 

models as web services. 

The contribution of this work is not a novel 

algorithmic method, but a clear and compact 

integration of: (i) a logistic regression model over 

lifestyle and symptom features, (ii) reproducible 

training and evaluation code, and (iii) a web-based 
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interface and API suitable for demonstration, 

teaching, and rapid prototyping. 

III. DATASET 

A. Feature Set 

Each record in the dataset represents an individual 

and contains the following features: 

• Age (years). 

• Smoking years: number of years of active 

smoking. 

• Air pollution exposure: numerical score (0–

100) approximating chronic exposure to 

polluted environments. 

• Alcohol intake: units of alcohol per week. 

• Coughing: binary indicator (0 = absent, 1 = 

present). 

• Fatigue: binary indicator (0/1). 

• Weight loss: binary indicator (0/1). 

• Shortness of breath: binary indicator (0/1). 

• Chest pain: binary indicator (0/1). 

The target label is a binary diagnosis variable, 

where 1 represents lung cancer and 0 represents no 

lung cancer. Two CSV files are implemented in the 

project: 

• lung_cancer_samples.csv: a compact dataset 

for quick experimentation; 

• lung_cancer_extended.csv: a larger synthetic 

dataset with the same schema to introduce more 

variation. 

Both datasets are fully synthetic and constructed to 

encode plausible correlations, such as higher risk 

for individuals with longer smoking history and 

greater pollution exposure, but they do not 

correspond to real patient data. 

B. Limitations 

The synthetic nature and modest size of the 

datasets impose several limitations. The data lacks 

the diversity and noise typical of real-world clinical 

environments, and the feature set is restricted to a 

small number of risk factors and symptoms. 

Additionally, there is no temporal information or 

imaging data such as CT scans. These constraints 

are intentional in order to keep the system 

lightweight and interpretable, but they mean that the 

model must not be used for clinical decision-

making. 

IV. METHODOLOGY 

A. Preprocessing Pipeline 

All training logic is implemented in Python using 

scikit-learn. The dataset is loaded from CSV into a 

pandas Data Frame, the diagnosis column is 

separated as the target label, and the remaining 

columns form the feature matrix. 

The data is partitioned into training and test sets 

using stratified sampling to preserve the class 

distribution between positive and negative cases. 

Since all features are numeric, standardization is 

applied using scikit-learns Standard Scaler to 

improve the numerical stability of the classifier. 

Preprocessing and modeling are encapsulated 

within a single scikit-learn Pipeline, using a Column 

Transformer to apply the scaler to all numeric 

features. This design ensures that the same 

transformations used during training are also 

applied consistently at inference time, reducing the 

risk of data leakage or mismatched preprocessing 

steps. 

B. Model 

The core predictive model is logistic regression 

implemented in scikit-learn, configured with a 

maximum of 500 iterations and class weighting set 

to “balanced” to address potential class imbalance. 

Logistic regression is chosen because it provides 

probabilistic outputs suitable for risk estimation, 

because its coefficients are easily interpretable, and 

because it integrates seamlessly with scikit-learn’s 

pipeline and model persistence tools. 

The trained pipeline—comprising both the 

preprocessing steps and the logistic-regression 

classifier— is serialized using joblib into a single 

artifact (lung_cancer_pipeline. joblib). This single 

artifact simplifies deployment and ensures that the 

exact combination of preprocessing and model 

parameters used during training is also used in 

production. 
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C. Web Application Architecture 

The deployment layer is implemented using the 

Flask microframework. The architecture includes 

three main components: 

• Model loading: at application startup, the 

serialized pipeline is loaded from disk into 

memory. 

• HTML form interface: the root route (“/”) 

supports 

GET and POST methods. On GET requests, a form 

is rendered that allows users to input feature values 

(age, smoking years, environmental exposure, and 

symptom indicators). On POST requests, form data 

is converted into a single-row pandas Data Frame 

with the expected column names and passed to the 

pipeline’s predict_proba method to obtain a   

probability of lung cancer. 

 

• JSON API: a separate route (“/API/predict”) 

accepts JSON payloads containing the same 

feature keys and returns the predicted 

probability, a binary prediction, and a coarse 

risk category as a JSON response. 

For interpretability, the predicted probability p of 

lung cancer is mapped into three risk tiers: 

• Low risk: p < 0.4; 

• Medium risk: 0.4≤ p < 0.7; 

• High risk: p ≥0.7. 

These thresholds are heuristic and can be tuned 

based on application requirements 

. 

   False Positive Rate 

Fig. 3: Illustrative ROC curve (AUC 1.00). 

    V. EXPERIMENTS AND RESULTS 

A. Experimental Setup 

The model is trained and evaluated on the 

synthetic dataset using a hold-out test split, 

reserving a portion of the data (e.g., 30%) for 

testing. The project code (src/train_model.py) 

implements this split using train_test_split with 

stratification and logs evaluation metrics after 

training. 

Performance is measured using: 

• area under the receiver operating characteristic 

curve 

(ROC–AUC); 

• accuracy; 

• precision, recall, and F1-score for the positive 

(cancer) class; 

• a confusion matrix summarizing true positives, 

true negatives, false positives, and false 

negatives. 

All experiments are conducted using Python 3, 

scikit-learn, pandas, NumPy, and joblib. The 

training and evaluation logic is encapsulated in one 

script so that experiments can be reproduced by re-

running the script with the same random seed and 

dataset. 

B. Quantitative Results 

 Using the extended synthetic dataset 

(lung_cancer_extended.csv) and a test split of 30%, 

the implemented code in src/train_model.py 

produced the following results on the held-out test 

set (6 samples, 2 negatives and 4 positives), as 

recorded in models/metrics. Json: 

• ROC–AUC: 1.00 

• Accuracy: 1.00 

• Precision (positive class): 1.00 

• Recall (positive class): 1.00 
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• F1-score (positive class): 1.00 

 

 

These perfect scores reflect the simplicity and 

small size of the synthetic dataset, and should not 

be interpreted as real world clinical performance. 

VI. DISCUSSION 

The proposed system demonstrates that a simple 

logistic regression model can be effectively 

integrated into a modern web application to provide 

fast and interpretable risk estimates. By 

encapsulating preprocessing and modeling in a 

single pipeline and exposing the model via a Flask 

application, the system achieves consistent data 

handling between training and inference, low-

latency predictions suitable for interactive use, 
TABLE I 

PERFORMANCE METRICS OF THE TRAINED 

LOGISTIC-REGRESSION MODEL ON THE 

SYNTHETIC TEST SET. 

Metric Value 

ROC–AUC 1.00 

Accuracy 1.00 

Precision 

(positive) 

1.00 

Recall 

(positive) 

1.00 

F1-score 

(positive) 

1.00 

and a clear separation between machine-learning 

logic and presentation logic. 

The experimental results show perfect 

performance (ROC– AUC, accuracy, precision, 

recall, and F1-score all equal to 1.0) on the small 

synthetic test set. This outcome reflects the limited 

size and controlled nature of the data rather than 

real-world difficulty. In practical clinical settings, 

data are far noisier and more heterogeneous, and 

such perfect performance should not be expected. 

The system also has other limitations: only a 

limited set of features—primarily lifestyle factors 

and a few symptoms— are modeled, while other 

relevant variables such as detailed occupational 

exposures, comorbidities, family history, and 

genetic markers are absent. Additionally, the system 

does not incorporate imaging data, which plays a 

crucial role in practical lung cancer diagnosis. 

For these reasons, the system is best viewed as a 

teaching and prototyping tool rather than as a 

clinical decision support system. Nevertheless, it 

provides a concrete example of how interpretable 
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Fig. 2. Bar chart summarizing precision, recall, and F1-score (all equal to 1.0) for 
the positive class. 
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statistical models can be deployed in user-friendly 

interfaces and integrated into wider software 

ecosystems. 

VII. CONCLUSION 

This paper has presented a complete, end-to-end 

implementation of a lung cancer risk prediction 

system based on logistic regression and deployed as 

a Flask web application. The system includes 

synthetic datasets, a reproducible training and 

evaluation pipeline, and a dual-interface 

deployment consisting of a web form and a JSON 

API. 

This project demonstrates how core concepts 

from machine learning and web development can be 

combined into a single educational application. 

While the current model and data are not suitable 

for clinical use, the architecture and codebase 

provide a practical template for building 

interpretable, low-latency machine-learning 

applications in healthcare and other domains. 
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