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Abstract: A combination of advanced recurrent and convolutional networks is proposed
in this study for financial asset price estimation. The performance of Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU) and the hybrid CNN-LSTM is evaluated, as
the latter has not been thoroughly studied despite being able to find both spatial and temporal
patterns [6]. This research covers three kinds of financial assets—Apple stocks (AAPL),
Bitcoin cryptocurrency (BTC-USD) and the Euro to U.S. Dollar exchange rate (EUR/USD),
in contrast to many that only analyze stocks [2,6,11,13,14], cryptocurrencies [16,19] or, very
rarely, exchange rates. Such an approach allows us to apply predictive models to different
markets. I gathered financial history from Yahoo Finance and then included four major
technical indicators: SMA, EMA, RSI and MACD, while other studies might just use the raw
data itself or a smaller number of indicators [15,17]. Standardized data was divided into
sequences for a prediction period of 60 days. Assessing the model involved means of MAE
and R? giving a more balanced result than obtained by using just RMSE or MAPE [13-15].
Choosing these methods allows for a broader and reusable approach for financial time series
forecasting, as compared to previous studies limited in architecture or evaluation [2,14,15].
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1.Introduction

Regular price predictions in financial markets exist as a complicated scientific pur-suit
because financial time series data shows significant volatility and non-linearity [6].
Autoregressive Integrated Moving Average (ARIMA) serves as one of the most common
forecasting techniques used for financial market prediction [1,6]. Simple linear models that
currently exist cannot sufficiently represent organizational financial data patterns since their
scope in different markets and assets is restricted [6,9]. Financial predictions benefit from deep
learning models which learn complex time-series patterns because these systems can analyze
dependencies within sequential data patterns [14,17].
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The Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) variants
of recurrent neural networks (RNNs) along with deep learning have proven very effective at
forecasting financial time series data according to [5,17]. These models have demonstrated
excellent capability in tracking extensive sequential relationships which results in their
effective use for stock market and cryptocurrency prediction tasks [11,13]. The combination of
Convolutional Neural Networks (CNN) and LSTM networks through hybrid models called
CNN-LSTM has demonstrated excellent outcomes for increasing financial price prediction
accuracy [5,19].

This research investigates the application and comparison between LSTM and GRU
and CNN-LSTM models which analyze financial market price prediction while
simultaneously examining stock (Apple Inc. - AAPL) and cryptocurrency (Bitcoin - BTC-
USD) and foreign exchange (EUR/USD). The collected financial data from Yahoo Finance
received additional enhancement through widely applied market analysis indicators that
included Simple Moving Average (SMA) and Exponential Moving Average (EMA)
alongside Relative Strength Index (RSI) and Moving Average Convergence Divergence
(MACD) [16,18]. The models received preprocessing followed by normalization and sequential
data transformation before they engaged in predicting 60-day asset price predictions.

The evaluation of model performance included the use of Mean Absolute Error
(MAE) and Coefficient of Determination (R?) as identified in [4,15]. The metrics serve as
quantitative indicators to evaluate both the prediction accuracy and operational efficiency
when dealing with financial time series information. The scientific literature shows that
deep learning models provide superior results than conventional machine learning approaches
when used for financial forecasting in markets with volatility and high data frequencies
[2,10].

This research uses comparative assessments between LSTM GRU and CNN-LSTM
models to establish what constitutes the most efficient deep learning technique for financial asset
price prediction. The research provides beneficial knowledge which enables investors together
with traders together with financial analysts to make better decisions through Al-driven
models during markets that change frequently.

2. Literature Review

The stock market analysis depends fundamentally on fundamental analysis along with
technical analysis as its traditional evaluation methods. Fundamental analysis provides
financial performance assessments through financial statement analysis and company
valuation assessment based on public availability of business information. Fundamental
analysis enables investors to find appropriate stock prices by analyzing financial and
industrial market data which allows them to locate both underpriced and expensive stocks.
Technical analysis works through price chart and volume data evaluation to help create
future market expectation. The Moving Average Convergence Divergence (MACD) and
moving averages function as technical indicators for generating buy and sell signals. The
techniques struggle to establish clear connections among the complex stock price
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determining elements although they demonstrate limited effectiveness. The advantages of
machine learning models especially neural networks become apparent to solve this problem.

Financial time series benefit from Long Short-Term Memory (LSTM) models
which excel at recognizing complex relationships along with detecting nonlinear patterns in
such data sets. Stock market forecasting literature demonstrates that Pang X et al. [11] used
LSTM models to address traditional learning models’ flaws in their study. Long-term
temporal dependencies are managed effectively by these models because financial time series
require this functionality. Chong, Han, & Park (2017) established deep learning methods
achieve superior results than linear models for stock prediction but encounter difficulty
during evaluation periods (ref-Marketanalysis).

Research conducted by Hiransha, Gopalakrishnan, Menon, & Soman (2018)
has validated that CNNs outperform all other neural networks for stock price prediction
tasks under diverse circumstances. The networks demonstrate superior pattern detection
capabilities in stock prices which proves them better than established models including ARIMA
in particular circumstances. The advancements address classical methods’ limitations
specifically because they understand market movement complexities better [11].

Nelson, Pereira & de Oliveira (2017) performed an evaluation of LSTM
models that analyzed stock price rise or decline predictions reaching above 55% precision. The
prediction achievement of neural networks for modeling market trends has been demonstrated
despite an average success rate at moderate levels [10].

Sentiment analysis when implemented inside machine learning models
demonstrates remarkable potential for successful integration. The implementation of neural
networks has been effective for investor sentiment analysis of both social media content and
financial news data. Network predictions have become more precise since they now
integrate investor emotional data which controls stock market price movements. The
research presented by Yu (2014) backs his discovery that deep neural networks (NN) produce
better stock trading forecasts for Amazon data than traditional approaches [11].

Deep learning finance research expands constantly and the applications
explained above lead the current wave of financial innovation. The models experience stability
issues when market volatility increases such as the situation during the COVID-19 pandemic
period. The combination of investor sentiment data and economic indicators with deep
learning models shows promise for both enhanced prediction accuracy and improved
investment decision support to managers of capital assets.

LSTMs and CNNs have proved effective in stock price prediction yet they
face persistent barriers which affect their functioning during times of elevated market
volatility. The present models demonstrate effective results but scientists and researchers need to
develop them further to achieve complete potential which will help expand financial
applications The emerging research field of deep learning methods together with new
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assessment methodologies for sentiment analysis shows promising progress in this area of study

[10].

3. Methodology
3.1. Data

The study obtained its financial data from Yahoo Finance between January 1st 2015 to
September 1st 2024. The data contains three asset classes with their information collected daily:
Apple Inc. stocks (AAPL) and Bitcoin cryptocurrency (BTC-USD) along with the
EUR/USD Forex exchange rates. We obtained the closing values and trading volumes of
each asset because these two metrics play essential roles in trend evaluation. Our attempt
to enhance dataset quality and prediction precision included incorporation of multiple
technical indicators that include Simple Moving Average (SMA), Exponential Moving
Average (EMA), Relative Strength Index (RSI) and Moving Average Convergence Divergence
(MACD). These technical indicators enable traders to see market direction trends together
with market volatility and reversal point potential. Min-Max scaling normalization
occurred on the data to promote better model convergence rates. The dataset structured with
60-day sequences enabled models to use historical information for forecasting future price
values.
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Figure 1. Historical data of AAPL, BTCUSD and EURUSD (1.1.2015-31.12.2020).
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3.2. Research Methods

The development of deep learning financial market price predictions depends on data
preparation and model selection as well as evaluation methods. Three artificial neural network
architectures were used in this study which included Long Short-Term Memory (LSTM)
together with Gated Recurrent Unit (GRU) and Convolutional Neural Network—LSTM (CNN-
LSTM). The researchers used Keras together with TensorFlow libraries in Python for model
design and training while NumPy, Pandas, Matplotlib, and Scikit-learn processed and
visualized the data.

The research worked with daily closing price data and trading volumes from three different
investment categories comprising Apple Inc. (AAPL) stock prices as well as Bitcoin (BTC-
USD) crypto values together with EUR/USD foreign exchange pair prices. Four widely
implemented technical indicators—Simple Moving Average (SMA), Exponential Moving
Average (EMA), Relative Strength Index (RSI), and Moving Average Convergence Divergence
(MACD)—were added to the dataset for improving model precision. The selected technical
indicators give data analysts useful information about market price movements together with
momentum signals and signals for potential turning points.

e Relative Strength Index (RSI): The Relative Strength Index functions as an oscillating
indicator to measure price movement intensity for spotting points of market oversold or
overbought conditions. The average success and failure values during a 14-day
measurement period produce a value range that oscillates between 0 to 100. A traditional
rule states that when RSI crosses above 70 the asset tends to become overbought,
potentially leading to price downside corrections, and a reading beneath 30 shows asset
oversold conditions that could trigger price increases [3]. Adjustments in these RSI
levels must be considered according to the unique asset characteristics and market
circumstances. The RSI successfully detects market turning points through its capability
to 1dentify price movements that extend beyond their recent trading range at excessive
speeds. RSI analysis becomes more accurate when measuring it against price movement
because a bearish signal occurs when price extends its peak while the RSI maintains or
drops below its previous maximum, sending a warning about rising market dislocations
[12]. A bullish divergence takes place when price sets a new bottom while RSI registers
at a level higher than its earlier low, indicating upcoming upward price trends.

RSI =100 - =22 O
1+RS

Where the term RS (Relative Strength) is the ratio between the average gains and the

average losses over a reference period N (typically N = 14):

__ Average gains over N periods

RS

@

Average losses over N periods

* Moving Average Convergence Divergence (MACD)
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The Moving Average Convergence Divergence functions as a trend-following indicator that
reveals the price relationship between two security moving averages [7]. The value of MACD
is obtained through a mathematical operation that subtracts the 26-period EMA from the 12-
period EMA. The MACD line connects with a signal line that usually exhibits a 9-period
exponential moving average calculation from the MACD line data. MACD signal formation
from crossings between the MACD line and the signal line serves as a trading indicator where
bullish events occur when the MACD crosses above the signal and bearish occasions manifest
when the MACD crosses below the signal. The MACD histogram displays the difference
between the MACD line versus the signal line, thus showing a graphical interpretation of the
indicator’s movement. The analysis becomes valuable whenever there is a MACD—price action
mismatch, which indicates impending reversals.

MACD(t) = EMA«(t) - EMAss(t)  (3)

Signal(t) = EMAs(MACD(t)) 4)

Where:

— EMA2(t) is the 12-period exponential moving average,
— EMA26(t) 1s the 26-period exponential moving average,
— Signal(t) is the 9-period EMA of the MACD line.

* Simple Moving Average (SMA)

A Simple Moving Average determines asset price averages through summation of closing
prices in defined periods divided by the measurement length. SMA uses identical weightage for
every data point during calculations, which makes it a recognized and popular indicator to
smooth prices and detect trends [8]. Potential support and resistance levels get detected through
the use of the SMA.

N-1
SMAy() = %Z P(t — i)
i=0

— SMA,(t) is the simple moving average over N periods.
— P(t — i) 1s the price at time ¢ — i, for the last N periods.
— The sum is calculated over the last N values.

* Exponential Moving Average (EMA)
The Exponential Moving Average operates as a moving average which gives priority to
current price data, thereby providing a more responsive trend indicator compared to the

Simple Moving Average.

The EMA provides better responsiveness than the SMA. The EMA computing process
combines recent price movements using a specific weight calculation.
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EMA.(t) =0 -P)+ (1 —0) - EMA,(t—1)  (6)

— EMA,(t) is the exponential moving average over N periods.
— P(t) is the price at time .

— EMA,(t — 1) is the previous EMA value.

— The smoothing factor is given by: @ =2/ (N + 1).

During training, the model received datasets whose features underwent MinMaxScaler
processing to achieve scale values between 0 and 1 because this allowed neural networks to
learn more effectively. The evaluation of model performance required real market values, so
predictions were transformed from their scaled format back to their original values.

The available information was separated evenly between training and testing components, with
training receiving 80% of the data and testing receiving the remaining 20%. A fifty-day
historical market dataset served as input to forecast the coming sixty-day market price
outcomes.

The building of models took place through Keras’s Sequential API. The long-term
dependencies within financial time series were successfully processed by LSTM and GRU
networks through their repeated recurrent layer structure. Local patterns in the data were
extracted through convolutional layers that the CNN-LSTM model applied before LSTM layers
processed the sequence relationships. Training sessions reached 100 epochs along with 32 items
per batch and utilized the Adam optimizer to perform efficient weight updates.

The evaluation utilized the transformed price values for actual measurements, while MAE and
R? scores measured the model performance.
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4. Results
4.1. AAPL Stock price prediction with LSTM, GRU and CNN-LSTM
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Figure 2. Comparison of actual and predicted AAPL stock prices using LSTM, GRU and
CNN-LSTM.

Table 1. Performance Summary Table for APPL.

Model MAE R?
LSTM 21.322865 -0.667647
GRU 14.765218 0.126337
CNN-LSTM 25.111654 -1.108788

The research on Apple Inc. (AAPL) stock data reveals essential insights into the performance
of different neural network architectures for stock price prediction. Both Mean Absolute Error
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(MAE) and R? values are used to evaluate the forecast accuracy of stock prices and the
prediction fit relative to actual data.

With an MAE value of 21.32, the LSTM model produces predictions that deviate, on average,
by 21.32 units from the actual stock prices. The model shows limitations in predicting stock
closing prices, as a more accurate prediction requires smaller MAE values. Furthermore, the
model is less effective than basic mean-based predictions, as indicated by its negative R? value
of -0.67. A negative R* demonstrates poor model performance, signaling that the model failed
to capture data variance patterns, which leads to inaccurate market predictions. These results
suggest that the LSTM architecture may require adjusted settings, enhanced features, or more
precise training to accurately predict AAPL stock prices.

The GRU model surpasses LSTM performance, achieving an MAE of 14.77 due to more
accurate predictions. However, the predictions still exhibit a considerable error, indicating they
are not fully precise. The model shows a weak positive correlation in its predictions, reflected
by an R? value of 0.13. While GRU outperforms LSTM, it does not capture a substantial portion
of the stock price variance. The positive R* score suggests a slight advantage over LSTM in
learning patterns, but its limited performance indicates it cannot deliver consistently reliable
predictions. Further improvements could be achieved by testing additional hyperparameters and
applying advanced data preprocessing techniques.

The hybrid CNN-LSTM model, on the other hand, achieves the highest MAE of 25.11, despite
being designed to extract local patterns through convolutional layers before passing sequences
to the LSTM layers. The model’s predictions deviate significantly from actual values,
exceeding the errors of both LSTM and GRU models. Its R? value of -1.11 is lower than both
the baseline mean model and the other models, demonstrating weak performance in modeling
price patterns. Although CNN layers can extract patterns in time series data, their contribution
was insufficient for this particular prediction task. The convolutional component may have
failed to enhance the model’s ability to capture temporal dependencies in stock prices, resulting
in unsatisfactory performance. The complexity of CNN-LSTM architectures appears
inappropriate for this problem, as simpler models like LSTM or GRU could potentially yield
better results.

The predictive performance of LSTM, GRU, and CNN-LSTM models suffered from several
limitations when forecasting AAPL closing prices:

e LSTM and CNN-LSTM models performed poorly, with negative R? values indicating
failure to accurately capture market dynamics. The addition of CNN layers in CNN-
LSTM did not lead to substantial improvements, showing that these layers did not
enhance prediction accuracy in this context.

e GRU achieved the best results among the tested models, with a lower MAE than LSTM
and CNN-LSTM, though its forecast accuracy remained insufficient for reliable
predictions. GRU managed long-term dependencies better than LSTM, leading to
superior performance, but overall results were still inadequate for dependable stock
price forecasting.

e Overall predictive accuracy was weak across all models. High MAE values and low
R? scores highlight their insufficient performance. Stock price forecasting for AAPL
proves to be extremely challenging for deep learning models, as accurate predictions
require more extensive data and improved modeling techniques.
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4.2.BTC price prediction with LSTM, GRU and CNN-LSTM
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Figure 3. Comparison of actual and predicted BTC prices using LSTM,
GRU and CNN-LSTM

Table 2. Performance Summary Table for BTC.

Model MAE R?

LSTM 8074.831279 0.606356
GRU 10250.092527 0.406289
CNN-LSTM 9875.668741 0.453544
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By running the models on Bitcoin (BTC) data, researchers gained essential insights into how
LSTM, GRU, and CNN-LSTM networks perform in forecasting cryptocurrency price shifts.
The study uses Mean Absolute Error (MAE) and R? to evaluate model performance in terms of
prediction accuracy and goodness of fit.

Predictions generated by the LSTM model achieved a Mean Absolute Error of 8,074.83. This
indicates that, on average, the model’s predicted Bitcoin prices deviate by $8,074.83 from the
actual prices. Given Bitcoin’s high volatility, this level of error is considered acceptable. The
LSTM model shows a positive correlation of 0.61 between predicted values and actual data
points. Its ability to detect recurring patterns in Bitcoin price movements allows the model to
make reasonably accurate predictions. Performance could be further improved through
additional parameter optimization, longer training cycles, and inclusion of more dataset
variables.

The GRU model, in contrast, exhibits inferior performance to LSTM, producing an MAE of
10,250.09. This higher average error indicates that GRU predictions deviate more from actual
Bitcoin prices than LSTM predictions.

So it shows weaknesses regarding its ability to grasp complex time-dependent Bitcoin price
patterns. The 0.41 R? value reveals the GRU model has less successful prediction performance
compared to LSTM regarding actual price levels. The GRU model showcases limited ability to
predict new data because its R? value remains lower than LSTM and the other models. The
predictive ability of the GRU model exists but it fails to demonstrate better results than LSTM
structures without further improvements.

The CNN-LSTM algorithm performs similarly to the GRU model with an MAE of 9875.67 but
demonstrates a slight improvement over the latter model. Test results indicate that the CNN-
LSTM model fails to outperform basic LSTM and GRU models in Bitcoin price prediction even
though it requires a more complex structure. The R? score of 0.45 reflects that predictions made
by the model show a moderate relationship to actual values yet remain below the threshold for
powerful predictions. The performance of the CNN-LSTM model indicates that although
convolutional layers can extract local patterns in the data, their application might not lead to
optimal Bitcoin price prediction.

Results from the Bitcoin data analysis using the LSTM, GRU, and CNN-LSTM models reveal
important aspects about forecasting in volatile cryptocurrency markets. Here are the key
takeaways:

e The LSTM model achieved the highest performance scores through its 8074.83 MAE
and 0.61 R? score. The predictive model produced error at a high level but it achieved
better pattern detection outcomes when compared to GRU and CNN-LSTM models.
The R? value indicates that Long Short-Term Memory (LSTM) establishes itself as the
optimal network choice to detect lengthy relationships inside the price time series.

e The GRU model proved less effective than LSTM because it showed an unsatisfactory
performance, including an MAE of 10250.09 and an R? of 0.41. Despite showing some
ability to record price movement trends, the model performed worse because its higher
MAE score and lower R? value demonstrate its limitation in correctly forecasting
Bitcoin prices, especially because of its restricted ability to process long-term
dependencies in the data.
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e The CNN-LSTM model delivered performance comparable to the GRU model, with an
MAE of 9875.67 and an R? value of 0.45. The usage of convolutional layers shows
constraints when predicting cryptocurrency prices in this particular outcome. In this
context, the CNN layers failed to bring improved value because the model performed
comparably to or worse than basic LSTM models.

All models demonstrated predictive patterns, yet their performance remained subpar primarily
because Bitcoin price moves naturally show high volatility and complexity. Advanced deep
learning methods face substantial difficulty while trying to analyze the non-linear
cryptocurrency market dynamics because prediction errors remain high and R? values fall
between low and moderate ranges. The successful improvement of cryptocurrency prediction
models demands supplementary features that include sentiment analysis together with
macroeconomic data or alternative machine learning methods.

4.3. EURUSD price prediction with LSTM, GRU and CNN-LSTM
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Figure 4. Comparison of actual and predicted EURUSD prices using LSTM, GRU and
CNN-LSTM.

Table 3. Performance Summary Table for EURUSD.
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Model MAE R?

LSTM 0.037482 -3.566379
GRU 0.038011 -3.798972
CNN-LSTM 0.041392 -3.199258

The evaluation process of EUR/USD exchange rate data reveals how LSTM, GRU, and CNN-
LSTM architectural frameworks perform when predicting changes in currency market value.
Mean Absolute Error (MAE) along with R? are used to assess model results according to
standard regression metrics. The MAE presents average prediction errors to analysts, while R?
shows model prediction accuracy.

The LSTM model produces predictions with an average difference of 0.0375 from the actual
EUR/USD exchange rates, reflected in its MAE of 0.037482. These prediction error levels are
considered low based on this data. However, a very low R? value of -3.57 raises serious concern.
An R? value below zero indicates that the model produces results significantly worse than basic
mean predictions. The LSTM model encounters difficulty in understanding the natural
fluctuations of the EUR/USD exchange rate, as indicated by its poor R? value, even though the
MAE remains reasonable. The exchange rate volatility appears challenging for the model due
to complex non-linear market dynamics.

The MAE value produced by the GRU model measures 0.038011, similar to the score achieved
by the LSTM model. The average prediction error of GRU becomes equivalent to LSTM’s
average prediction error rate when evaluating both models. The R? value of -3.80 demonstrates
worse performance than the mean baseline model by the GRU model. The negative R? indicates
a clear failure of the GRU model in learning the critical relationship between past data and the
EUR/USD exchange rate. The identical MAE scores between LSTM and GRU models
highlight the insufficient ability of GRU to detect key patterns in currency market dynamics,
resulting in its below-average R* score.

The CNN-LSTM model, with convolutional and LSTM layers, achieved a 0.041392 error rate.
Comparatively, the CNN-LSTM model reflects the greatest error level, making it the least
precise solution for predicting the EUR/USD exchange rate. Similar to the other models, the
CNN-LSTM presents a negative R? score of -3.20, demonstrating that it produces worse
predictions than a baseline model predicting data mean values. No improvement emerges in
pattern extraction from the currency market despite the use of convolutional layers in the CNN-
LSTM structure. The model’s performance does not increase notably when convolutional layers
are incorporated for this EUR/USD prediction task.

Calculations of EUR/USD data using the three models (LSTM, GRU, and CNN-LSTM)
produced crucial insights about the challenges of currency exchange rate prediction. The main
outcomes show the following informations:

e Both MAE measurement and predictive accuracy results of the LSTM model
demonstrated strong performance compared to other proposed models, with an MAE of
0.037482. However, the model performs worse than a basic mean prediction due to its
negative R? value of -3.57. The LSTM model proved incapable of discovering
significant patterns in the data because EUR/USD price movements contained complex
factors that the learning algorithm failed to address properly.
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e The GRU model matched the LSTM performance regarding MAE values (0.038011),
but resulted in an inferior R? score of -3.80. The higher prediction error coupled with
the lower R? confirmed that GRU failed to exceed LSTM in prediction success and in
modeling the data relationships. GRU performs poorly in forecasting EUR/USD
exchange rates, indicating its unsuitability for this task.

e Although the CNN-LSTM model used an advanced hybrid structure, it produced the
highest MAE of 0.041392 and a negative R? of -3.20. The convolutional layers failed to
provide additional benefit for exchange rate prediction accuracy. The dual convolutional
and LSTM layers could not detect time-dependent relationships effectively, leading to
inferior performance compared to single LSTM or GRU models in terms of accuracy
and goodness-of-fit metrics.

All three regression models performed poorly, as indicated by their negative R? values, which
show that they failed to explain the patterns in EUR/USD exchange rate data. Forecasting
currency exchange rates is a challenging problem that likely requires advanced techniques or
additional features, such as economic indicators and sentiment analysis, combined with
alternative artificial intelligence approaches.

The small MAE values nevertheless reflect appreciable errors when forecasting the EUR/USD
exchange rate. These results illustrate the difficulty of accurately predicting exchange rates in
foreign markets, given their high complexity and marked volatility. Future research should
explore new strategies and parameters to optimize and enhance model performance effectively.

The EUR/USD dataset displayed insufficient performance from the LSTM, GRU, and CNN-
LSTM models because all models reported negative R? scores. Although the LSTM model
achieved better performance than GRU and CNN-LSTM models for MAE calculation, it
showed limited success in capturing exchange rate dynamics.

5. Conclusions

The different nature of financial assets, along with their volatility levels, influences how
effective deep learning models are in generating predictions on AAPL stock, Bitcoin, and the
EUR/USD exchange rate. The unique behavioral patterns of these models during market
predictions support the hypothesis that no single architecture can dominate across all market

types.

The results from the GRU model delivered superior performance on AAPL stock prediction,
yielding the smallest MAE and a positive R? value, demonstrating its capability to handle the
gradual nature of equity market trends. The data showed that LSTM and CNN-LSTM
experienced reduced performance because these models appeared to overfit the data and detect
short-term noise patterns.

The BTC market volatility required LSTM to deliver superior performance, achieving the
lowest MAE and highest R? statistics. LSTM demonstrates exceptional capability in handling
long-term dependencies, analyzing irregular patterns within highly volatile time series. The
volatile nature of cryptocurrency prices may require deeper time-dependent memory functions,
which explains the reduced performance of GRU and CNN-LSTM models in this context.

For EUR/USD, all implemented models exhibited persistently poor performance, as indicated
by negative R? scores and comparable MAE values. The deep learning models failed to
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adequately capture currency market behavior because external macroeconomic factors were
absent from the available features.

Model selection practices should always consider the unique characteristics of the evaluated
asset. Stock market data required GRU, while the volatile nature of Bitcoin favored LSTM as
the preferred model. Predictive power for forecasting the EUR/USD pair proved inconsistent
across all models because price-based features alone were insufficient. Adaptability and the
inclusion of relevant features remain essential for obtaining optimal predictive outcomes in
financial time series forecasting.

Abbreviations
The following abbreviations are used in this manuscript:

e LSTM - Long Short-Term Memory

e GRU — Gated Recurrent Unit

e NN - Convolutional Neural Network

e SMA - Simple Moving Average

e EMA — Exponential Moving Average

e RSI — Relative Strength Index

e MACD — Moving Average Convergence Divergence
e MSE — Mean Squared Error

e MAE — Mean Absolute Error

e R*— Coefficient of Determination

e ARIMA — Autoregressive Integrated Moving Average
e RNN — Recurrent Neural Networks

e BTC - Bitcoin

e NN — Neural Networks
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