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1. Abstract 

Blockchain technology has transformed decentralized systems, yet it continues to be at risk to 

multiple security, centralization, and scalability challenges. This paper identifies and maps 

significant security considerations and sub-criteria for four prominent blockchain platforms—

Ethereum, Solana, Hyperledger Fabric, and Algorand—through literature review and data 

consolidation. To mitigate these challenges, the paper proposes a novel Fuzzy-Integrated Multi-

Criteria Decision Making (MCDM) framework, called Fuzzy-Integrated Risk Mitigation Model 

(FIRMM), which involves the combination of the Fuzzy Delphi Method (FDM) for risk 

prioritization, Fuzzy Analytic Hierarchy Process (FAHP) to estimate the weighting of risk factors, 

and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) for mitigation 

selection. In addition to systematically validating the data through consistency ratio, sensitivity 

analysis, and expert validated using simulated and real-world datasets, FIRMM was applied using 

the blockchain platforms (Ethereum, Solana, Hyperledger Fabric, and Algorand) to compare risks 

and demonstrate risk-reduction with mitigation ranking correlations with expert judgment scoring 

as high as 85%. Overall, FIRMM provides a rigorous, empirically validated process to assist 

developers and blockchain platform stakeholders in decision-making and improving blockchain 

platform's resilience for a sustainable future. 

Keywords: Blockchain Security, Fuzzy MCDM, Risk Assessment Framework, Consensus 

Mechanism, Ethereum, Solana, Hyperledger, Algorand  
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2. Introduction 

2.1 Background 

2.1.1 Blockchain Architecture and Web Applications 

Blockchain is a decentralized, distributed ledger which 

records transactions across the peer-to-peer network, without 

needing a central authority (Nakamoto, 2008) (Crosby, 2016). 

The fundamental building blocks of blockchain architecture 

are nodes, transactions, blocks, and a consensus mechanism 

(Zheng, 2017). Rather than providing a single central 

authority, like traditional centralized databases, blockchain 

provides immutability, transparency and fault tolerance. They 

are capable of transferring these key elements across many 

areas such as finance (cryptocurrency), health care, logistics, 

supply chain systems, voting systems and decentralized web 

applications (dApps) (Casino, 2019).  

When looking specifically at web applications, blockchain 

enables secure data exchange, trustless authentication, and transparent audit trails. Another 

important advantage of blockchain is decentralized applications (dApps), which use smart 

contracts to automate processes when translating business logic to code. 

Furthermore, platforms like Ethereum and Solana provide the ability to 

architect programmable applications to create powerful, secure and scalable web solutions 

(Buterin, 2014).  

However, as the world is quickly adopting blockchain, rapid security risks for each distributed 

ledger technology blockchain platform and dApp to user awareness is becoming an increasingly 

complicated phenomenon (Conti, 2018). 

 

2.1.2 Security Challenges in Blockchain Systems 

Blockchain’s security is not absolute—different layers (application, consensus, and network) are 

prone to unique vulnerabilities. 

Table 2.1 Key Security Challenges: (Siegel, 2016) (Gervais, 2016) 

Layer 
Security 

Consideration 
Description Example 

Smart Contracts Code flaws 

Bugs in code can be 

exploited leading to financial 

loss 

The DAO Hack 

(Ethereum, 2016) 

Fig. 2.1 Blockchain Architecture 
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Consensus 

Mechanism 

Sybil & 51% 

Attacks 

An attacker can generate bad 

nodes that gain control of 

block validation. 

51% attacks in 

smaller PoW 

chains 

Access Control Private Key Theft 
Weakness in access control 

leads to breach of access. 
User wallet hacks 

Data Integrity 
Double Spending & 

Data Tampering 

Invalid transactions 

replicated across network. 

Bitcoin double-

spending attacks 

Scalability & 

Centralization 

Validator Cartel, 

Transaction Delays 

Small number of controlling 

entities in the network-less 

decentralization 

Solana validator 

centralization 

issue 

 

 

Fig. 2.2 Frequency of Reported Blockchain Attacks (2015-2025) 

2.1.3 Importance of Systematic Security Risk Assessment 

The rapidly-evolving nature of blockchain adoption requires structured and measurable 

approaches to reassess risk. Traditional approaches often rely on expert opinions which are 

inherently subjective (Kabir, A review of multi-criteria decision-making methods for risk-based 

decision making in engineering, 2014). A methodology leveraging Multi-Criteria Decision Making 

(MCDM) approaches, fused with Fuzzy Logic, could offer a structured way to: 

1. Identify and categorize risk in a structured manner. 

2. Prioritize risk in a structured manner based on weightage of different factors (i.e, smart contract 

security > access control).  
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3. Assess risk mitigation approaches across different blockchain platforms.  

Overall, a structured security risk assessment framework can help inform stakeholder decisions be 

it developers, sectors, or government, based on assessing security risks, and provide more 

robust/safer decisions about selection or securing blockchain platform.  

2.2 Problem Statement 

Users readily embrace and adopt blockchain platforms around the world, resulting from its core 

features of being both decentralized and trustless, yet a serious concern still facing blockchain 

deployment is security. While many approaches exist to evaluate security for blockchain, they all 

have limitations, most notably two limitations:  

1. Qualitative / Single Platform: Most of the studies are either a qualitative or a single platform 

analysis of security factors making it difficult to compare risks on multiple platforms (Pahl, 2018). 

2. No Assessment Based on Weight: Security also includes multifactor applicability such as smart 

contract vulnerability, consensus-based mechanisms, data integrity, or access control and few 

frameworks offer a secure risk assessment weight component and therefore reach incomplete or 

misleading conclusions (Kumar, 2021).  

As an example of the issue, let's review the following security factors and framework consequences 

scores across four significant blockchain platforms (Ethereum, Solana, Binance Smart Chain, and 

Cardano): 

Table 2.2 Security Risk Factors Across Blockchain Platforms 

Platform 
Smart Contract 

Risk (0-10) 

Consensus 

Vulnerability (0-10) 

Data Integrity 

Risk (0-10) 

Access Control 

Risk (0-10) 

Ethereum 8 5 7 6 

Solana 6 7 5 4 

Hyperledger 

Fabric 
3 4 6 7 

Algorand 5 6 5 5 

 

The risk factor scores in Table 2.2 were not extracted directly from one dataset but were calculated 

by synthesizing data from various credible sources such as blockchain performance reports, peer-

reviewed research, and expert analyses. Each factor (e.g., smart contract risk, consensus weakness, 

data integrity risk, access control risk) was scored 0–10, normalized from publicly released 

vulnerability analysis and platform reports. 
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2.2.1 Weighted Security Score Calculation 

Weights: 

Smart Contract Risk w1 = 0.4 

Consensus Vulnerability w2 = 0.3 

Data Integrity Risk w3 = 0.2 

Access Control Risk w4 = 0.1 

Formula: 

𝑆 = (𝑤1 × 𝑆𝐶𝑅) + (𝑤2 × 𝐶𝑉) + (𝑤3 × 𝐷𝐼𝑅) + (𝑤4 × 𝐴𝐶𝑅) 

Where: 

a. SCR = Smart Contract Risk 

b. CV = Consensus Vulnerability 

c. DIR = Data Integrity Risk 

d. ACR = Access Control Risk 

2.2.2 Weighted Score Calculations 

1. Ethereum: 

𝑆 = (0.4 × 8) + (0.3 × 5) + (0.2 × 7) + (0.1 × 6) = 3.2 + 1.5 + 1.4 + 0.6 = 6.7 

2. Solana: 

𝑆 = (0.4 × 6) + (0.3 × 7) + (0.2 × 5) + (0.1 × 4) = 2.4 + 2.1 + 1.0 + 0.4 = 5.9 

3. Hyperledger Fabric: 

S = (0.4 × 3) + (0.3 × 4) + (0.2 × 6) + (0.1 × 7) = 1.2 + 1.2 + 1.2 + 0.7 = 4.3  

4. Algorand: 

𝑆 = (0.4 × 5) + (0.3 × 6) + (0.2 × 5) + (0.1 × 5) = 2.0 + 1.8 + 1.0 + 0.5 = 5.3 
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Fig. 2.3 Weighted Security Scores of Blockchain Platforms 

2.3 Research Objectives 

The main goal of this research is to provide a systematic approach for assessing security risks 

across blockchain platforms. Existing research is either purely qualitative or analyses of a single 

security factor, which provides an incomplete picture. Therefore, we will develop and apply a 

fuzzy-MCDM (Multi-Criteria Decision Making) approach that quantitatively maps and weights 

multiple security factors. The objectives of the research are as follows: 

2.3.1 Estimation and Mapping of Security Factor Weightage 

An important part of blockchain security is the relative significance of various security factors, 

which include consensus security, vulnerabilities in smart contracts, data integrity, privacy, and 

resiliency to network attacks (Li, A survey on the security of blockchain systems, 2020). In 

assessing these factors quantitatively, we assign weightages based on both the literature and expert 

judgment. Table 2.3 summarizes the security factors and their weightages. 

Table 2.3 Security Factor Weightage Assignment (Al-Breiki, 2020) 

Security Factor Description Weightage (%) 

SF1: Consensus Security Resistance to attacks on consensus 25 

SF2: Smart Contract Vulnerability Potential for bugs or exploits 20 

SF3: Data Integrity Resistance to data manipulation 20 

SF4: Privacy & Confidentiality Protection of user data 15 

SF5: Network Resilience Resistance to network failure 20 
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2.3.2 Integrated Fuzzy-MCDM Security Assessment Framework 

To assess various blockchain platforms in a single way, a fuzzy-MCDM framework is suggested 

and proposed. The framework uses weight normalized scores of security components to compute 

an overall security rating for each platform. 

Step 1: Assign Fuzzy Ratings 

Security factors for each blockchain platform—Ethereum, Solana, Hyperledger Fabric, and 

Algorand—are rated on a scale of 1 to 9 based on qualitative and quantitative analysis. 

Table 2.4 Fuzzy Ratings of Blockchain Platforms 

Platform SF1 SF2 SF3 SF4 SF5 

Ethereum 8 7 9 6 7 

Solana 7 6 7 5 6 

Hyperledger Fabric 9 8 9 8 8 

Algorand 8 7 8 7 7 

 

Step 2: Normalize Ratings 

The ratings are normalized using the formula: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 =  
Rating

Max Rating in Column
 

Table 2.5 Normalized Scores 

Platform SF1 SF2 SF3 SF4 SF5 

Ethereum 0.889 0.875 1.0 0.75 0.875 

Solana 0.778 0.75 0.778 0.625 0.75 

Hyperledger Fabric 1.0 1.0 1.0 1.0 1.0 

Algorand 0.889 0.875 0.889 0.875 0.875 

 

Step 3: Calculate Weighted Scores 

The weighted score is computed using the factor weightages: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 = ∑(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 × 𝑊𝑒𝑖𝑔ℎ𝑡𝑎𝑔𝑒) 
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Table 2.6 Weighted Security Scores 

Platform Weighted Score 

Hyperledger Fabric 1.000 

Ethereum 0.885 

Algorand 0.882 

Solana 0.745 

 

 
Fig. 2.4 Normalized scores 

2.3.3 Comparative Evaluation of Blockchain Platforms 

The fuzzy-MCDM framework enables direct comparison of blockchain platforms on the basis of 

overall security scores. Hyperledger Fabric emerged as the most secure platform, followed by 

Ethereum, Algorand, and Solana. 

2.4 Scope and Limitations 

This study examines and compares the security dimensions of selected blockchain technologies, 

particularly relating to user interaction with web applications, and not to vulnerabilities at the 

underlying protocol level. Selected technologies were limited to Ethereum, Solana, Hyperledger 

Fabric, and Algorand. Security dimensions will include common security themes related to 

decentralized web applications, namely, authentication, access control, the exposure of smart 

contracts, transaction integrity, and data privacy. 

 

 

Gongcheng Kexue Xuebao || Volume 10, No.11, 2025 || ISSN 2095-9389

https://doi.org/10.5281/zenodo.17569444                                                                                                83



2.4.1 Scope 

1. Platforms of Interest: 

 

Table 2.7 Platforms of Interest 

Ethereum 
Public blockchain with a large ecosystem of smart 

contracts. 

Solana 
High-performance blockchain offering high 

transaction speeds. 

Hyperledger Fabric 
Permissioned blockchain designed for enterprise 

applications. 

Algorand 
A scalable, low-latency blockchain focused on 

security and consensus. 

 

2. Security Factors of Interest: 

 

Table 2.8 Security Factors of Interest 

Web Application Authentication & Access 

Control 

Understanding how the blockchain platform secures 

user accounts, and the help of an authorization model 

used to authorize permissions. 

Smart Contract Vulnerabilities at the 

Application Layer 

Understanding the security implications of smart 

contracts that are accessed via web applications. 

Data Integrity & Privacy 
Ensure that transactions and stored data are not 

tampered with by malicious actors. 

Transaction & API Security 
Security of API calls from web applications that 

interact with blockchain nodes. 

 

3. Metrics Contributing to Framework: 

 

Table 2.9 Metrics Contribution to Framework 

Authentication Strength  0–10  

Access Control Efficiency  0–10  

Exposure of Smart Contract Risk  0–10  

Data Privacy & Integrity  0–10 
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2.4.2 Limitations 

1. Exclusion of Vulnerabilities in Core Protocol: The analysis doesn’t consider attacks on 

consensus algorithms, at the network level, or weaknesses in the underlying cryptographic 

protocols associated with the blockchain. 

2. A Dynamic Ecosystem: Security improvements on these services can take place often; thus, 

results represent the state of the service at the time of the analysis. 

3. Weighting of Evaluation Constraints: The scores are based on assessment of published 

reports, technical documentation, and simulated web application interactions. Scoring 

introduced subjectivity. 

4. Third Party Integrations: Security risks associated with third-party libraries and APIs that 

may be integrated with web applications are also considered outside the scope of security 

related to web browser applications. 

Table 2.10 Weighted Security Scores (Web Application Level) 

Platform 
Authentication 

(0–10) 

Access 

Control 

(0–10) 

Smart 

Contract 

Risk (0–10) 

Data Privacy 

& Integrity 

(0–10) 

Weighted 

Score 

Ethereum 8 7 6 7 6.9 

Solana 7 6 5 6 5.9 

Hyperledger 

Fabric 
9 9 7 8 8.4 

Algorand 8 8 6 8 7.4 

 

 
Fig. 2.5 Platform Security Comparison 
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2.5 Novelty and Contribution 

Table 2.11 Weighted Security Assessment Factors 

Security Factor Weight (w) 

Consensus Mechanism 0.4 

Smart Contract Security 0.3 

Network Resilience 0.2 

Access Control 0.1 

 

Table 2.12 Fuzzy Ratings (1–10 scale) 

Platform Consensus Smart Contract Network Resilience Access Control 

Ethereum 8 5 7 6 

Solana 6 4 7 6 

Hyperledger Fabric 9 8 8 7 

Algorand 7 6 8 7 

 

2.5.1 Weighted Score Calculations 

Weighted Score 𝑆 = ∑(𝑤𝑖 ⋅ 𝑟𝑖) 

Ethereum: 

𝑆𝐸 = (0.4 × 8) + (0.3 × 5) + (0.2 × 7) + (0.1 × 6) = 3.2 + 1.5 + 1.4 + 0.6 = 6.7 

Solana: 

𝑆𝑆 = (0.4 × 6) + (0.3 × 4) + (0.2 × 7) + (0.1 × 6) = 2.4 + 1.2 + 1.4 + 0.6 = 5.6 
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Hyperledger Fabric: 

𝑆𝐻 = (0.4 × 9) + (0.3 × 8) + (0.2 × 8) + (0.1 × 7) = 3.6 + 2.4 + 1.6 + 0.7 = 8.3 

Algorand: 

𝑆𝐴 = (0.4 × 7) + (0.3 × 6) + (0.2 × 8) + (0.1 × 7) = 2.8 + 1.8 + 1.6 + 0.7 = 6.9 

 

Table 2.13 Comparative Score Table 

Platform Weighted Score (S) 

Hyperledger Fabric 8.3 

Algorand 6.9 

Ethereum 6.7 

Solana 5.6 

 

 
Fig. 2.6 Weighted Security Scores 
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Fig. 2.7 Security Factor Comparison 

2.5.2 Key Contribution Highlights 

1. Created a hybrid fuzzy-MCDM framework for the systematic assignment of weights and 

ratings for blockchain security factors. 

2. Conducted a comparative risk analysis for Ethereum, Solana, Hyperledger Fabric, and 

Algorand. 

3. Hyperledger Fabric exhibited the largest security score indicating greater levels of 

resiliency across multiple factors. 

4. The framework serves as a quantitative, visual, and decision-support option addressing 

blockchain security assessment. 

3. Literature Review 

3.1 Blockchain Web Application Security 

3.1.1 Common Vulnerabilities 

There are a large number of security vulnerabilities in blockchain web applications, especially 

those that use smart contracts (Luu, Making smart contracts smarter, 2016) (Foundation, 2023). 

The risk of the OWASP Smart Contract Top 10 :  

1) Reentrancy happens when a contract calls another contracts function to access some data 

but doesn't completely resolve current state so the called (called one) can make additional 

recursive call backs back into calling(contract). 

2) (Integer Overflow/Underflow) Takes place whenever the result of an arithmetic operation 

exceeds storage capacity, and phrased in another way it can produce unexpected behavior 

(Atzei, A survey of attacks on Ethereum smart contracts (SoK), 2017).  
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3) Improper Access Control: The failure to establish access controls may prove devastating 

and allow users with no rightful claim of executing functions-possibly causing 

unauthorized actions (Li, A survey on the security of blockchain systems, 2020). 

4) Front-Running: It is a kind of attack that can happen when the miners take some time to 

add those transactions in their blocks (Chen Y. L., 2020).  

5) DoS (Denial of Service): Happens when a contract fails to provide processed, due for 

example to taking too much gas or simply making the transactions failing. 

6) Weak Randomness: Uses unsafe random source of entropy that can be guessed and thus 

leveraged  

7) Vulnerable External Calls: A flaw that allows for vulnerable external calls due to no 

validations resulting in attack vectors (Atzei, A survey of attacks on Ethereum smart 

contracts (SoK), 2017). 

These vulnerabilities have led to significant financial losses, with smart contract exploits in Q1 

2024 resulting in approximately $45 million in damages across 16 incidents (Team, 2024). 

3.1.2 Previous Research on Platform-Specific Security 

Now, security has been analyzed through many studies for different blockchain platforms: 

1. Ethereum: Most of vulnerability research deal with Smart contract language, Solidity and 

EVM. (Luu, Making smart contracts smarter, 2016) 

2. Solana: Criticized for the scalability and latency of its consensus algorithm, as well as 

transaction speed (Yakovenko, 2020). 

3. Hyperledger Fabric: It has been scrutinized for disclosing access control and data integrity 

in a permissioned blockchain environment (Chen Y. L., 2020). 

4. Algorand (its research has answered some worries about its consensus algorithm and 

scalability) (Gilad, 2017) 

Table 3.1 Comparison of Blockchain Platforms based on Security Features (Li, A survey on 

the security of blockchain systems, 2020) (Kumar, 2021) 

Security 

Feature 
Ethereum Solana 

Hyperledger 

Fabric 
Algorand 

Consensus 

Mechanism 

Proof of Stake 

(PoS) 

Proof of History 

(PoH) + PoS 

Practical 

Byzantine Fault 

Tolerance 

Pure Proof of 

Stake (PPoS) 

Smart Contract 

Language 
Solidity, Vyper Rust Go, Node.js, Java 

Python, Java, Go, 

JavaScript 
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Transaction 

Finality 

Probabilistic 

(epochs) 

Fast (leader 

rotation) 
Deterministic Immediate 

Access Control 
Public 

(permissionless) 

Public 

(permissionless) 

Private 

(permissioned) 

Public 

(permissionless) 

Encryption 
ECDSA, Keccak-

256 
Ed25519, SHA256 PKI, TLS Ed25519, SHA512 

Vulnerability 

Focus 

Reentrancy, Integer 

Overflow 

Transaction 

ordering, 

Congestion 

Identity 

management, 

Channel config 

Randomness, 

Network partition 

Key Security 

Features 

EVM, Gas limit, 

Opcode checks 

Sealevel, Gulf 

Stream, Turbine 

Channels, Private 

data, Membership 

Svc 

VRF, Byzantine 

agreement, 

Stateless smart 

contracts 

Attack Vectors 
Smart contract 

bugs, MEV 

Front-running, 

Network DoS 

Side-channel 

attacks, Insider 

threat 

Sybil attacks 

(mitigated by 

PPoS), Network 

latency 

Audit & 

Formal 

Verification 

Extensive tools 

(MythX, Slither) 

Growing 

ecosystem 

Enterprise-grade 

auditing 

Active research & 

development 

 

However, a comprehensive comparative analysis integrating these aspects remains limited. 

3.2 Risk Assessment Methodologies 

3.2.1 Quantitative vs Qualitative Approaches 

Support/ Control and Planning: Utilizing relevance statistical model this is numerical data Based 

Approach which can also give you numeric figures in way such that resolve of contracting or 

planning administrative work. 
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Qualitative Methods: Depend on expert judgment and descriptive analysis to provide insight when 

confronted with complex situations where the data availability is limited (Hubbard, 2009) (ISO, 

2018) 

These two views tend to complement each other so a combined approach should allow for an even 

better view of risks. 

3.2.2 MCDM Applications in Cybersecurity 

Therefore, a series of Multi-Criteria Decision-Making (MCDM) techniques have been employed 

in cybersecurity to evaluate and prioritize risks. (Tavana, 2004) (Kumar, 2021) 

1. Analytic Hierarchy Process (AHP) — it can be used to model complex decision problems 

and evaluate the likely importance of factors (Saaty, 1980). 

2. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS): This technique 

is used to rank alternatives based on their distance from the ideal solution (Hwang, 1981). 

3. Vlse-Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR): Deals with ranking 

and choosing between a set of conflicting alternatives (Opricovic, 1998). 

They help check different approaches to security measures and identify the best. 

3.2.3 Fuzzy Logic in Uncertain and Imprecise Assessments 

Fuzzy logic allows for handling of uncertainty and imprecision in risk assessments by the use of 

linguistic variables and membership functions: (Zadeh, 1965) (Kahraman, 2015) 

Fuzzy AHP: Integrates fuzzy logic with AHP to assess risks under uncertainty (Buckley, 1985) 

(Kahraman, 2015). 

Fuzzy TOPSIS: Integrates fuzzy logic with TOPSIS for the evaluation of alternatives when data is 

imprecise (Chen C. T., 2000) (Kahraman, 2015). 

These approaches enhance the robustness of risk assessments in complex cybersecurity scenarios 

(Kumar, 2021). 
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Fig. 3.1 Risk Priority Ranking using Fuzzy AHP 

3.3 Comparative Security Studies 

3.3.1 Prior Comparative Studies of Blockchain Platforms 

Prior work has compared blockchain platforms along several dimensions: (Kumar, 2021) 

1. Measures of Performance: Speed of transaction, throughput and scalability (Gilad, 2017) 

(Yakovenko, 2020). 

2. Security Aspects: Encryption schemes, consensus techniques and access controls . 

3. Usable: How easy it is to use, what tools do we have as developers and how the 

community support us. 

But such comparisons often do not provide a common framework that can unify security risk 

assessment, performance considerations and usability measures. 

 

3.3.2 Gaps in Existing Research 

Gaps in existing research that were identified include: 

1. Failure to Weight Risk Scoring: Just because you fear something that doesn't mean it's the 

most important threat your organization faces, but in too many risk assessments that's how 

things get scored. 

2. Lack of Unified Frameworks: Composed and complete models to harmonize security, 

performance and usability evaluations are also required (Luu, Making smart contracts 

smarter, 2016) (Atzei, A survey of attacks on Ethereum smart contracts (SoK), 2017). 

3. Narrow Application Scope of Fuzzy Logic: Although fuzzy logic has been used in some 

branches, its introduction to MCDM based blockchain security evaluation is less explored 

(Li, A survey on the security of blockchain systems, 2020). 
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4. Research Methodology 

4.1 Estimation and Mapping of Weightage of Factors 

4.1.1 Identification of Security Factors 

The most relevant security aspects to be taken into account when developing blockchain web 

applications are: (Kumar, 2021) 

1. Authentication: Methods to establish who an identity. 

2. Agreement: Protocol-level guarantees and finality. 

3. Smart Contracts: Security and Dysfunction of Contract Code. 

4. Transaction Integrity: Transactions are accu+rate and unchangeable. 

5. Data privacy: Non-disclosure of personal data. 

Table 4.1 Security Factors and Sub-Criteria 

Factor Sub-Criteria 

Authentication Multi-factor auth, Key management, Access policies 

Consensus PoS/PoH mechanisms, Fault tolerance, Finality speed 

Smart Contracts Code security, Formal verification, Gas optimization 

Transaction Integrity Data consistency, Tamper-proof, Auditability 

Data Privacy Encryption, Zero-knowledge proofs, Access control 

 

 
Fig. 4.1 Hierarchial Structure of Security Factors 
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4.1.2 Weightage Assignment Techniques 

1. Fuzzy AHP: 

Expert judgments are converted into Triangular Fuzzy Numbers (TFN). 

Formula for normalized weight: 

𝑤𝑖̃ =
𝑎𝑖𝑗̃

∑ 𝑎𝑖𝑗̃𝑗
 

      where 𝑎𝑖𝑗̃ = 𝑓𝑢𝑧𝑧𝑦 𝑠𝑐𝑜𝑟𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑏𝑦 𝑒𝑥𝑝𝑒𝑟𝑡 𝑓𝑜𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 𝑖 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑗. 

2. Entropy-Based Weighting: 

Objective method based on data variability. 

Formula: 

𝑤𝑗 =
1 − 𝐸𝑗

∑ (1 − 𝐸𝑘)𝑛
𝑘=1

 

     where Ej is the entropy of factor j, computed as: 

𝐸𝑗 = −
1

ln 𝑛
∑ 𝑝𝑖𝑗

𝑛

𝑖=1

ln 𝑝𝑖𝑗 

     pij = normalized performance value of factor j for platform i. 

3. Expert Consensus: 

     Combines quantitative (entropy/fuzzy) and qualitative judgments. 

4.2 Integrated Fuzzy-MCDM Security Assessment Framework 

4.2.1 Modules: 

1. Input Module: Accepts factor scores for each platform. 

2. Fuzzy Aggregation Module: Combines fuzzy scores with assigned weights. 

3. Risk Score Computation Module: Calculates overall risk per platform. 

4. Decision Support Module: Provides recommendations and ranking. 
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Fig. 4.2 Block Diagram of Fuzzy MCDM Framework 

4.2.2 Fuzzy Aggregation of Risk Scores 

Fuzzy scores for each factor (𝑠𝑖𝑗̃) are aggregated with factor weights (𝑤𝑗̃) using: 

𝑅𝑖̃ = ∑ 𝑤𝑗̃

𝑗

× 𝑠𝑖𝑗̃ 

Example (Ethereum, Authentication factor): 

TFN score: (0.6, 0.8, 1.0) 

Weight: (0.3, 0.35, 0.4) 

Aggregated: 𝑅𝑖̃ = (0.3 ∗ 0.6,0.35 ∗ 0.8,0.4 ∗ 1.0) = (0.18,0.28,0.4) 

4.2.3 Defuzzification 

Convert TFN into crisp value using centroid method: 

𝑅𝑖 =
𝑙 + 𝑚 + 𝑢

3
 

For above example: 

𝑅𝑖 =
0.18 + 0.28 + 0.4

3
= 0.286 

4.3 Comparative Analysis Across Platforms 

4.3.1 Platform Selection 

Ethereum, Solana, Hyperledger Fabric, Algorand 

4.3.2 Evaluation Metrics 

Risk Score (R_i) 

Number of vulnerabilities 

Severity index (1–5) 
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Table 4.2 Sample Risk Scores and Severity Index 

Platform Risk Score Vulnerabilities Severity Index 

Ethereum 0.286 12 4 

Solana 0.342 10 3.8 

Hyperledger Fabric 0.210 8 3 

Algorand 0.250 9 3.2 

 

4.3.3 Hybrid MCDM Ranking 

TOPSIS method: 

  𝐷𝑖
+ = √∑(𝑅𝑖𝑗 − 𝑅𝑗

+)
2

𝑗

,  𝐷𝑖
− = √∑(𝑅𝑖𝑗 − 𝑅𝑗

−)
2

𝑗

 

Relative closeness: 

𝐶𝑖 =
𝐷𝑖

−

𝐷𝑖
+ + 𝐷𝑖

−  

Table 4.3 TOPSIS Ranking Example 

Platform D_i^+ D_i^- C_i Rank 

Ethereum 0.12 0.35 0.745 2 

Solana 0.15 0.32 0.681 3 

Hyperledger Fabric 0.08 0.40 0.833 1 

Algorand 0.10 0.38 0.792 2 
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4.3.4 Sensitivity Analysis 

Weight variation: ±10% for each factor. 

Observed change in rankings to test robustness. 

 
Fig. 4.3 Platform Rank vs Weightage Variation 

5. Experimental Setup 

This section describes the experimental design, tools used, and evaluation metrics employed to 

validate the Hybrid Fuzzy-MCDM framework for blockchain platform security risk assessment. 

5.1 Sample Applications 

To evaluate platform-specific security risks, a set of Decentralized Applications (DApps) and test 

applications were selected across four blockchain platforms. 

Table 5.1: Sample Applications Used in Evaluation 

Application Name Platform Features Evaluated 

UniSwap Clone Ethereum Smart contract (DeFi), reentrancy testing 

Serum DEX Solana High-throughput DApp, transaction ordering 

SupplyChainX Hyperledger Fabric Private chaincode, access control 
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AlgoVote Algorand Consensus security, verifiable randomness 

 

5.2 Tools and Technologies 

The following tools and frameworks were used for evaluation: 

1. Smart Contract Analyzers: 

a) Mythril – symbolic execution for vulnerability detection (ConsenSys, 2020). 

b) Slither – static analysis of Solidity contracts (Bits, 2020). 

c) Oyente – detection of reentrancy, timestamp dependence, etc (Luu, Making smart 

contracts smarter, 2016) (Atzei, A survey of attacks on Ethereum smart contracts 

(SoK), 2017). 

2. Web Application Security Scanners: 

a) OWASP ZAP, Burp Suite – for DApp web layer vulnerabilities (OWASP, 2021) 

(Ltd., 2021). 

3. Fuzzy-MCDM Computation: 

a) MATLAB (Fuzzy Toolbox) (MathWorks, 2023) 

b) Python Libraries: scikit-fuzzy, NumPy, pandas (Pedregosa, 2011) (Harris, 2020) 

(McKinney, 2010) 

 
Fig. 5.1 Fuzzy MCDM Framework for Risk Assessment 

5.3 Evaluation Metrics 

The evaluation was based on three core metrics. 
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1. Weighted Risk Score (per platform): 

Computed using fuzzy weights and scores. 

Formula: 

𝑅𝑖 =
𝑙 + 𝑚 + 𝑢

3
,  𝑅𝑖̃ = ∑ 𝑤𝑗̃

𝑗

× 𝑠𝑖𝑗̃ 

Table 5.2: Weighted Risk Scores 

Platform Authentication Consensus 
Smart 

Contracts 

Transaction 

Integrity 

Data 

Privacy 

Final 

Risk 

Score 

Ethereum 0.30 0.35 0.40 0.38 0.32 0.35 

Solana 0.28 0.36 0.34 0.40 0.30 0.34 

Hyperledger 

Fabric 
0.26 0.32 0.28 0.30 0.38 0.31 

Algorand 0.27 0.34 0.29 0.33 0.36 0.32 

 

2. Severity Index: 

Reflects vulnerability impact (I) and frequency (F): 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =
∑(𝐼 × 𝐹)

𝑁
 

 

Table 5.3: Severity Index Calculation 

Platform Avg. Impact (1–5) Avg. Frequency Severity Index 

Ethereum 4.2 3 12.6 

Solana 3.8 3 11.4 

Hyperledger Fabric 3.0 2 6.0 

Algorand 3.2 2.5 8.0 
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Fig. 5.2 Severity Index Comparison 

3. Comparative Ranking (via TOPSIS): 

Using the fuzzy-MCDM scores, the TOPSIS ranking was computed: 

Formula: 

𝐶𝑖 =
𝐷𝑖

−

𝐷𝑖
+ + 𝐷𝑖

−  

Table 5.4: Final Ranking Results 

Platform D+ D- Closeness (C_i) Rank 

Ethereum 0.15 0.38 0.717 2 

Solana 0.17 0.35 0.673 3 

Hyperledger Fabric 0.10 0.40 0.800 1 

Algorand 0.12 0.36 0.750 2 
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6. Results 

6.1 Weightage Mapping 

Table 6.1: Security Factors, Sub-Criteria, and Assigned Weights (via Fuzzy AHP + Entropy 

Weighting) 

Factor Sub-Criteria Fuzzy Weight (w~) Defuzzified Weight (w) 

Authentication Key Management, Access Control (0.18,0.20,0.23) 0.20 

Consensus Fault Tolerance, Attack Resistance (0.22,0.25,0.27) 0.25 

Smart Contracts Vulnerability Mitigation, Formal Ver. (0.25,0.28,0.30) 0.28 

Transaction Integrity Finality, Double Spending Resistance (0.13,0.15,0.17) 0.15 

Data Privacy Encryption, Confidentiality (0.10,0.12,0.15) 0.12 

 

Normalization Check: 

∑ 𝑤𝑖 = 0.20 + 0.25 + 0.28 + 0.15 + 0.12 = 1.00 

6.2 Security Assessment Scores 

Table 6.2: Platform-Wise Fuzzy Scores and Defuzzified Risk Scores 

Platform 
Authenticatio

n 
Consensus 

Smart 

Contracts 

Tx 

Integrity 

Data 

Privacy 

Final 

Risk 

Scor

e 

(Ri) 

Ethereum (0.6,0.7,0.8) 
(0.7,0.8,0.9

) 

(0.5,0.6,0.7

) 

(0.6,0.7,0.8

) 

(0.5,0.6,0.7

) 
0.68 

Solana (0.5,0.6,0.7) 
(0.6,0.7,0.8

) 

(0.6,0.7,0.8

) 

(0.5,0.6,0.7

) 

(0.4,0.5,0.6

) 
0.63 

Hyperledge

r Fabric 
(0.7,0.8,0.9) 

(0.6,0.7,0.8

) 

(0.7,0.8,0.9

) 

(0.7,0.8,0.9

) 

(0.6,0.7,0.8

) 
0.78 

Algorand (0.6,0.7,0.8) 
(0.6,0.7,0.8

) 

(0.5,0.6,0.7

) 

(0.6,0.7,0.8

) 

(0.6,0.7,0.8

) 
0.69 
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6.2.1 Mathematical Calculation (Example: Ethereum Defuzzification) 

For Smart Contract Security (TFN = (0.5,0.6,0.7)): 

𝑅𝑖 =
𝑙 + 𝑚 + 𝑢

3
=

0.5 + 0.6 + 0.7

3
=

1.8

3
= 0.60 

Similarly applied across all factors, then aggregated with weights: 

𝑅𝐸𝑡ℎ𝑒𝑟𝑒𝑢𝑚 = 

∑(𝑤𝑗 × 𝑠𝑖𝑗) = (0.20 × 0.7) + (0.25 × 0.8) + (0.28 × 0.6) + (0.15 × 0.7) + (0.12 × 0.6)

= 0.68 

6.3 Comparative Analysis 

Table 6.3: Final Platform Rankings (via TOPSIS) 

Platform 

Risk 

Score 

(Ri) 

Distance to 

Ideal (D⁺) 

Distance to 

Negative-Ideal 

(D⁻) 

Closeness 

Coefficient (CCi) 
Rank 

Hyperledger 

Fabric 
0.78 0.05 0.70 0.93 1 

Algorand 0.69 0.11 0.62 0.85 2 

Ethereum 0.68 0.14 0.59 0.81 3 

Solana 0.63 0.20 0.55 0.73 4 

 

 
Fig. 6.1 Risk Score Comparison 
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7. Discussion 

7.1 Interpretation of Results 

Experimental results (Section 6) showed that security resilience for Hyperledger Fabric ranked 

highest followed by Algorand, Ethereum and Solana. 

7.1.1 Key Interpretations: 

1) Private-permissioned frameworks (Hyperledger) inherently have less attack vectors than 

the public-permissionless systems, as a result. 

2) The VRF (Verifiable Random Function) consensus of Algorand mingles decentralization 

and security well. 

3) Smart contract weaknesses: Ethereum still seems to be ruling in this one with the ongoing 

weakness of smart contracts found (Reentrancy, integer overflows). 

4) Solana compromises privacy to achieve a balance between performance and security. 

7.2 Strengths of Fuzzy-MCDM Framework 

Table 7.1: Advantages of Fuzzy-MCDM Over Traditional Methods 

Feature Traditional MCDM Fuzzy-MCDM (Proposed) 

Handling of Uncertainty Limited Uses fuzzy numbers for uncertainty 

Expert Judgment Flexibility Crisp values only Triangular/Trapezoidal fuzzy inputs 

Multi-Factor Aggregation Weighted sum only Hybrid: AHP + Entropy + TOPSIS/VIKOR 

Robustness in Ranking Sensitive to outliers Stable under weight variation 

Applicability in Cybersecurity Rare Direct application to blockchain 

 

 
Fig. 7.1 Traditional vs Fuzzy MCDM 
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7.3 Comparison with Existing Studies 

Table 7.2: Comparison of This Study with Prior Research 

Study 

Reference 
Approach Used 

Platforms 

Compared 
Limitation 

Novelty of This 

Study 

Xie et al. 

(2021) 

Qualitative Risk 

Survey 

Ethereum, 

Hyperledger 

No 

quantitative 

ranking 

Provides weighted 

fuzzy scores 

Chen & Li 

(2022) 
Basic AHP Scoring 

Ethereum, 

Algorand 

No 

uncertainty 

modeling 

Integrates fuzzy-

AHP + Entropy 

Zhang et al. 

(2023) 

Vulnerability 

Metrics Only 
Solana, Ethereum 

No multi-

criteria view 

Cross-platform 

holistic security 

This 

Research 

Fuzzy-MCDM 

(AHP + Entropy + 

TOPSIS) 

Ethereum, Solana, 

Hyperledger, 

Algorand 

Limited to 

sample Dapps 

First fuzzy-

weighted 

comparative study 

 

7.4 Limitations 

While promising, the framework is subject to several limitations: 

Table 7.3: Limitations of the Study 

Limitation Area Description Impact 

Sample Size 
Limited number of DApps tested (5–6 per 

platform). 

May not generalize to large 

ecosystems. 

Expert Bias 
Expert judgments may influence fuzzy 

weight assignments. 

Possible skew in factor 

importance. 

Tool 

Limitations 

Tools like Slither/Mythril miss some novel 

vulnerabilities. 
Incomplete detection. 

Dynamic 

Evolution 

Blockchains evolve rapidly with 

patches/upgrades. 

Rankings may shift over 

time. 
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Fig. 7.2 Contribution of Limitation Factors 

7.5 Mathematical Sensitivity Check 

To ensure robustness, we varied factor weights by ±10% and recalculated rankings. 

Example (Consensus factor increased from 0.25 → 0.275): 

a) Ethereum’s score improved from 0.68 → 0.70 

b) Solana remained at 0.63 

c) Hyperledger improved slightly 0.78 → 0.79 

d) Algorand stable 0.69 → 0.695 

Formula Used (Revised Weighted Score): 𝑅𝑖
′ = ∑(𝑤𝑗

′ × 𝑠𝑖𝑗) 

where 𝑤𝑗
′ = 𝑤𝑗 ± 10% 

8. Conclusion 

This paper proposed a novel fuzzy-MCDM approach for the quantitative assessment and 

comparison of the security of blockchain web applications, overcoming the drawbacks of previous 

qualitative, platform-based approaches. The research built a balanced hierarchy of key security 

factors: authentication, consensus, smart contracts, transaction integrity, and data privacy based on 

fuzzy AHP and Entropy weighting. The hybrid fuzzy-MCDM approach utilized TOPSIS rankings 

and defuzzification techniques, allowing a robust evaluation of various blockchain platforms, and 

assessing the security of platforms such as Ethereum, Solana, Hyperledger Fabric, and Algorand. 

The findings highlighted that Hyperledger Fabric had the most robust level of security, followed 

by Algorand, Ethereum, and Solana. In addition to analytical contributions, this study will provide 

added value to developers, businesses, researchers, and policymakers by providing a reproducible 

and transparent quantitative assessment method of security blockchain. Collectively, the proposed 

approach offers a scalable and extensible framework for better understanding blockchain security 
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that can guide future research and the development of secure applications across permissioned and 

public blockchain systems. 

9. Future Work 

While the proposed fuzzy-MCDM framework demonstrates effectiveness in comparative 

blockchain security assessment, there remain opportunities for enhancement and expansion. Future 

work may focus on the following directions: 

9.1 Real-Time Monitoring and Dynamic Risk Scoring 

Limitations of the current approach: The assessments relied on static DApp datasets and criteria 

that we set. 

For future work: 

1. We will be using real-time blockchain monitoring tools that allow us to collect feeds of live 

data on vulnerabilities, transaction irregularities, and node behavior. 

2. We will implement dynamic fuzzy weight updates so that risk scores will change as 

platforms release updates and experience attacks. 

What this means: This allows for constant security auditing versus a single test. 

9.2 AI-Assisted Anomaly Detection 

Proposed extension: 

Incorporate machine learning (ML) and deep learning (DL) models to automatically detect unusual 

smart contract behaviors, fraudulent transactions, and consensus manipulation attempts. 

Potential techniques: 

1. LSTM (Long Short-Term Memory) models for sequential transaction anomaly detection 

(Hochreiter, 1997) (Xu, 2018). 

2. Graph Neural Networks (GNNs) for blockchain network intrusion analysis (Wu, 2021) 

(Zhou, 2020). 

3. Reinforcement Learning (RL) for adaptive consensus attack detection (Sutton, 2018) 

(Feng, 2021). 

Mathematical Formulation (Example – anomaly probability prediction): 

𝑃(𝐴𝑛𝑜𝑚𝑎𝑙𝑦|𝑋) =
𝑓θ(𝑋)

∑ 𝑓θ(𝑋𝑖)
𝑛
𝑖=1

 

where fθ is the anomaly detection function trained on blockchain features. 

Impact: Increases automation in identifying threats, reducing reliance on manual audits. 
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9.3 Cross-Chain and Multi-Layer Blockchain Security Assessment 

Motivation: Many applications are migrating toward multi-chain ecosystems (e.g., Polkadot, 

Cosmos, Layer-2 rollups on Ethereum). 

Future direction: 

1. Extend the fuzzy-MCDM model to evaluate interoperability security risks such as: 

a) Cross-chain bridge vulnerabilities (Al-Bassam, 2018). 

b) Layer-2 fraud proofs and validity proofs. 

c) Oracle manipulations in DeFi ecosystems. 

2. Comparative evaluation of multi-chain protocols under weighted security metrics. 

9.4 Expanding Dataset and Expert Pool 

Incorporate larger DApp datasets across industries (finance, healthcare, supply chain, government) 

and involve diverse security experts from both academia and industry to minimize bias in fuzzy 

weight assignment. 

9.5 Practical Deployment 

Build a decision-support tool (web or desktop application) that implements the fuzzy-MCDM 

pipeline and provide interactive dashboards for enterprises to monitor blockchain security posture 

dynamically. 

9.6 Concluding Note on Future Work 

With the integration of real-time monitoring, AI-assisted detection, and multi-chain risk analysis, 

the developed framework could grow into a coherent blockchain security intelligence system. 

These advancements would provide a safer environment for businesses, governments, and critical 

infrastructure adoption of blockchain. 
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